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ABSTRACT

Radio signals propagating via the solar corona and solar wind are significantly affected
by compressive waves, impacting solar burst properties as well as sources viewed through
the turbulent atmosphere. While static fluctuations scatter radio waves elastically, mov-
ing, turbulent or oscillating density irregularities act to broaden the frequency of the
scattered waves. Using a new anisotropic density fluctuation model based on solar radio
bursts, we deduce the plasma velocities required to explain observations of spacecraft sig-
nal frequency broadening. The frequency broadening is consistent with motions that are
dominated by the solar wind at distances ∼>10R⊙, but the levels of frequency broadening
for ∼<10R⊙ require additional radial speeds ∼(100-300) km s−1 and/or transverse speeds
∼(20-70) km s−1. The inferred radial velocities appear consistent with the sound or pro-
ton thermal speeds, while the speeds perpendicular to the radial direction are consistent
with non-thermal motions measured via coronal Doppler-line broadening, interpreted as
Alfvénic fluctuations. Landau damping of parallel propagating ion-sound (slow MHD)
waves allow an estimate of the proton heating rate. The energy deposition rates due to
ion-sound wave damping peak at a heliocentric distance of∼(1−3) R⊙ are comparable to
the rates available from a turbulent cascade of Alfvénic waves at large scales, suggesting
a coherent picture of energy transfer, via the cascade or/and parametric decay of Alfvén
waves to the small scales where heating takes place.

Keywords: interplanetary scintillation (828), interplanetary turbulence (830), radio bursts
(1339), solar corona (1483), solar wind (1534)

1. INTRODUCTION

Radio waves propagating in the solar atmosphere are scattered by density fluctuations, affecting the
observed properties of radio emission originating either in the solar corona itself or in distant sources
close to the location of the Sun in the sky. Solar burst source angular sizes and time profiles are broad-
ened, and the apparent source positions are shifted, typically away from the Sun. Since the speeds of
density fluctuations are much less than the speed of radio waves, scattering is often treated as elas-
tic, resulting primarily in angular broadening of extra-solar point sources (e.g., Machin & Smith 1952;
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2 Azzollini et al.

Hewish 1958; Blesing & Dennison 1972; Anantharamaiah et al. 1994; Ingale et al. 2015), an increase in
the angular source sizes of solar radio sources (e.g., Fokker 1965; Steinberg 1972; Riddle 1974; Bastian
1994; Arzner & Magun 1999; Thejappa & MacDowall 2008; Kontar et al. 2017b; Chrysaphi et al. 2018;
Krupar et al. 2018; McCauley et al. 2018; Gordovskyy et al. 2019; Kontar et al. 2019; Chrysaphi et al.
2020; Krupar et al. 2020; Murphy et al. 2021; Maguire et al. 2021; Mohan 2021; Musset et al. 2021;
Sharma & Oberoi 2021; Clarkson et al. 2021) and changes in the paths of spacecraft signals observed
through the turbulent solar atmosphere (e.g., Woo 1978; Razmanov et al. 1980; Bradford & Routledge
1980; Bird 1982; Woo & Goldstein 1994; Efimov et al. 2013; Yakovlev & Pisanko 2018; Wexler et al.
2019; Efimov et al. 2020; Chiba et al. 2022). The density fluctuations are also routinely observed near
1 au (e.g., Celnikier et al. 1983; Marsch & Tu 1990; Krupar et al. 2020; Wang et al. 2024).
The coherent Compton scattering from electron density fluctuations that are moving or oscillating

perpendicular to the direction of wave propagation can, however, lead to an inelastic change in the
wavenumber and hence a frequency broadening that is normally a small fraction of the observed fre-
quency. Doppler broadening of radio waves from spacecraft has been extensively studied to diagnose
expansion of the solar wind (e.g., Woo 1978), and moving density irregularities have also been an-
alyzed via observations of interplanetary scintillations (e.g., Woo & Gazis 1993; Woo 1996; Morabito
2009; Mejia-Ambriz et al. 2015). The spectral width of the radio-wave signal, or the strength of scin-
tillation, is proportional to the speed of the density irregularity weighted by the amplitude of the den-
sity fluctuation. Using multiple receivers to observe interplanetary scintillation, Ekers & Little (1971)
found a random velocity component of v ≃ (100-200) km s−1 at (5-10) R⊙ and less than 50 km s−1 at
40 R⊙. Somewhat lower fractional velocities �v∕v ≃ 0.25 of the solar wind speed were deduced by
Armstrong & Coles (1972). Armstrong et al. (1986) reported a random velocity component at < 12R⊙
that was comparable to the bulk flow speed. Assuming a density model of the corona and the fractional
amplitude of density fluctuations, Wexler et al. (2020) used spacecraft carrier frequency fluctuations to
infer the flow velocity profile in the middle corona.
Hereweuse a recently-developed anisotropic density turbulencemodel (Kontar et al. 2023) to analyze

a large observational dataset of Doppler broadening of spacecraft carrier frequencies and thus deter-
mine the speeds of density fluctuations in the space between the Sun and 1 au. The spectral broadening
is discussed in terms of solar wind flows, compressive waves, and random plasma motions. By match-
ing observations, we determine the characteristic velocities of density fluctuations and we show how
the wavevector anisotropy, � = q∥∕q⟂, associated with density fluctuations along versus perpendicular
to the solar radius vector, affects these results. The average frequency broadening at >10 R⊙ is found,
in line with the previous works, to be determined mostly by the radial solar wind speed, while closer
to the Sun (<10 R⊙), both transverse and radial motions could contribute. Due to the wavenumber
anisotropy in the density fluctuations, which are typically elongated along the radial direction (� < 1),
smaller perpendicular velocities are needed to explain a given amount of frequency broadening. For
example, if � = 0.25, either radial speeds ≃160 km s−1 or transverse speeds ≃40 km s−1 are consistent
with the observed amount of frequency broadening.
In Section 2 we introduce the model used. In Section 3 we consider the effects of inelastic scattering

in the presence of motions perpendicular to the line of sight, and we derive the associated diffusion
tensor for radio waves in anisotropic turbulent plasma. We also compare the deduced randommotions
with non-thermal velocities deduced from the emission line broadening of hot ions.
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In Sections 4 and 5 we turn our attention to observed values of the frequency broadening �f. We
derive an expression for the fractional frequency broadening �f∕f in terms of the product of the fluid
velocity perpendicular to the line of sight and the wavenumber-weighted line-of-sight integral of the
density fluctuation amplitude. Using a density fluctuation model (deduced from observations of solar
radio bursts and angular broadening of extra-solar sources) we then deduce the magnitudes of the flow
velocities (and/or phase speeds) required to produce the observed frequency broadenings. The inferred
speeds are compared with other characteristic speeds, such as the sound speed, the Alfvén speed, and
the solar wind speed.
Sections 6 and 7 compare the power supplied by large-scale Alfvénic kink/shearing motions with

the heating effected by damping of the ion-sound waves associated with density fluctuations at much
shorter length scales. In Section 8 we summarize the results obtained and present our conclusions. A
number of Appendices present some of the more tedious mathematical derivations of certain results.

2. STATIC DENSITY FLUCTUATIONS AND ANGULAR BROADENING

Density fluctuations, with wavevector q, are characterized by their three-dimensional wavevector
spectrum S(q). Following previous studies (e.g., Arzner & Magun 1999; Bian et al. 2019; Kontar et al.
2019), the diffusion tensor describing elastic scattering of radio waves with wavevector k in a medium
containing static density fluctuations can be written as

Dij =
�!4pe

4!2
∫ qi qj S(q) � (q ⋅ vg) d3q

(2�)3
, (1)

where qi, qj (cm
−1) are the components of the density fluctuation wavevector in the directions labeled

by the suffices i, j, the wave group velocity vg = )!∕)k and !(k) = (!2pe + c2 k2)1∕2 is the angular
frequency of electromagnetic waveswith wavevector k in a plasma with local plasma frequency !pe(r).
Similar to Kontar et al. (2023), we take the spectrum of density turbulence to be anisotropic with a

constant anisotropy factor �, so that

S(q) = S(q̃) , where q̃ =

√
q2
∥

�2
+ q2

⟂2 + q2
⟂1 , (2)

which has axial symmetry around the ∥ direction, i.e., along the magnetic field B, and is isotropic with
respect to the q̃ basis. In matrix form, q̃ = A q = (�−1q∥, q⟂2, q⟂1), where A is the anisotropy matrix

A =

⎛⎜⎜⎝
�−1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠
. (3)

The quantity � appearing in Equations (2) and (3) quantifies the degree of anisotropy in the tur-
bulence distribution: � < 1 corresponds to density fluctuations elongated along the magnetic field
(q−1

∥
> q−1

⟂
, i.e., q∥ < q⟂), as is often observed in the solar wind (e.g., Celnikier et al. 1987; Musset et al.

2021). Typical reported values of � are 0.1−0.4 (e.g., Dennison & Blesing 1972; Coles & Harmon 1989;
Armstrong et al. 1990; Kontar et al. 2019; Chen et al. 2020; Kuznetsov et al. 2020; Clarkson et al. 2023).
For a radio wave propagating with vg ≃ c k∕|k| along the⟂1-direction (see Figure 5), we can find the

components of the diffusion tensor elements, viz. (Equation (A5))
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D =
�!4pe

16!2c
q �2

⎛⎜⎜⎝
�2 0 0

0 1 0

0 0 0

⎞⎟⎟⎠
, (4)

where we have introduced the spectrum-weighted mean wavenumber q �2, defined as (Kontar et al.
2023)

q �2 =∫ q S(q)
d3q

(2�)3
= �∫ q̃ S(q̃)

d3q̃

(2�)3
= �

4�

(2�)3
∫ q̃3 S(q̃) dq̃ . (5)

where in the second equality, we have transformed from the q basis to the q̃ basis, in which the
wavenumber spectrum is isotropic.
The diffusion tensorD given by Equation (4) has two non-zero elements that determine the scattering

rates d⟨�k2
∥
⟩∕dt and d⟨�k2

⟂2⟩∕dt. The ⟂2 and ∥ directions are perpendicular to the wave propagation

vector k (see Figure 5 in Appendix A). For �k ⟂ k, the scattering corresponding to terms d⟨�k2
∥
⟩∕dt

and d⟨�k2
⟂2⟩∕dt is elastic: |k + �k|2 ≃ |k|2 + 2k ⋅ �k = |k|2, i.e., |k| is a constant. To change

the absolute value of |k|, or equivalently the wave frequency !(k) ≃ c|k|, we must have non-zerok ⋅�k, i.e. d⟨�k2
⟂1⟩∕dt ≠ 0. The effects of such inelastic scatterings, which are important for frequency

broadening, are next considered.

3. INELASTIC SCATTERING OF RADIOWAVES

When the density fluctuations are not static, but are instead due to eitherwaves or density fluctuations
advected by plasma motions, the scattering could be inherently inelastic with d⟨�k2

⟂1⟩∕dt ≠ 0, so that|k| ≠ const, leading to a change in the wave frequency !. Consider an electromagnetic (EM) wave
with energy !(k) and wavevector k that is scattered by a density fluctuation with wavenumber q and
frequency
(q), resulting in a scattered EMwavewith frequency !(k′) and wavevectork′. Momentum
and energy conservation in such a three-wave process (Tsytovich & ter Haar 1995) demands that

k + q = k′, !(k) + 
(q) = !(k′) . (6)

Using the dispersion relation for electromagnetic waves !2(k) = !2pe + c2k2 and using the resonance
condition 
(q) = v ⋅ q as a dispersion relation, one finds that, for ! ≫ !pe, |k|≫ |q|, and |k′|≫ |q|,

q ⋅ k|k| ≃ 
(q)
c

=
q ⋅ v
c

. (7)

Hence to satisfy the conservation of energy and momentum relations (6), the density wavevector q
should be quasi-perpendicular to k:

q∥k
q⟂k ≃

v⟂k
c

≪ 1 , (8)

showing that density fluctuations involvingmotions perpendicular to k (v⟂k ≠ 0) produce a shift in the
themagnitude |k| of the electromagnetic wavevector and hence in the frequency of the electromagnetic
wave.
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3.1. Radially moving density fluctuations

The generalization of Equation (1) in the presence of non-static density fluctuations is

Dij =
�!4pe

4!2
∫ qi qj S(q) � (
(q) − q ⋅ vg) d3q

(2�)3
, (9)

where 
(q) is the dispersion relation for the density fluctuations, which is conceptually identical to
plasma wave scattering on plasma density fluctuations (Sagdeev & Galeev 1969; Goldman & Dubois
1982; Ratcliffe et al. 2012).
We first consider density fluctuations moving along the radial direction B, i.e., 
(q) = v∥ q∥. In this

case, the change of frequency (or absolute value of the wavevector of the radio wave) is due to non-zero
values of v∥. One can include the effects of the moving waves in the calculation of the components Dij

of the diffusion tensor that affects both the direction of propagation (angular broadening) and change
in wavenumber (frequency broadening). As shown in Equation (B14), the modified diffusion tensor
takes the form

D =
�!4pe

16!2 c
q �2

⎛⎜⎜⎝
�2 0 0

0 1 0

0 0
�2v2∥
c2

⎞⎟⎟⎠
. (10)

Naturally, Equation (10) reduces to Equation (4) when v∥ → 0.

3.2. Transverse density fluctuations

We can similarly evaluate the diffusion tensor components Dij for the case of waves moving in the
perpendicular (transverse) direction, with assumed dispersion relation 
(q) = v⟂2q⟂2. Substituting
this into Equation (9) gives the form of the diffusion tensor (see Equation (B19))

D =
�!4pe

16!2 c
q �2

⎛⎜⎜⎝
�2 0 0

0 1 0

0 0
v2⟂2
c2

⎞⎟⎟⎠
, (11)

Equations (10) and (11) show that all motions in the plane of the sky, i.e., perpendicular to the radio
wave propagation direction, lead to a change in the absolutemagnitude of the radio-wavewavenumber.
If there are waves in both the parallel (∥) and perpendicular (⟂2) directions, the diffusion effects simply
add together:

D =
�!4pe

16!2 c
q �2

⎛⎜⎜⎝
�2 0 0

0 1 0

0 0
�2v2∥+v2⟂2

c2

⎞⎟⎟⎠
. (12)

We note that since � < 1 perpendicular motions aremore effective at frequency broadening than radial
(parallel) motions.
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3.3. Random (turbulent) motions

Observation of solar corona UV spectral lines often show significant broadening in excess of
the thermal width at which the responsible atomic species is formed (e.g., Hassler et al. 1990;
Chandrasekhar et al. 1991; Banerjee et al. 1998; Doyle et al. 1998, 1999; Esser et al. 1999; Contesse et al.
2004; Banerjee et al. 2009; Landi & Cranmer 2009; Singh et al. 2011). Such non-thermal broadening of
lines is normally interpreted as the unresolved motion of emitting ions: either fluid motions (unre-
solved flows or waves) or motion of accelerated non-thermal ions (e.g. Jeffrey et al. 2014). Large-scale
fluid motions lead to resonance broadening (e.g., Bian et al. 2012; Wilczek & Narita 2012). Consid-
ering first random motions in the transverse (⟂2) direction, we suggest that the small scale density
fluctuations (mostly near the inner scale q−1i of density turbulence responsible for radio-wave scatter-
ing; Kontar et al. 2023) are advected by large-scale random plasma motions with speeds corresponding
to the outer scale of the turbulence. Within this framework, the velocity fluctuations ⟨v2

⟂2⟩ have a line
broadening effect that is identical to that of non-thermal ion velocities, and so can be modeled by re-
placing the Dirac delta-function resonance condition by a finite-width Gaussian characterized by a
turbulent velocity v⟂:

�
(

(q) − q ⋅ vg) → 1√

2� q2
⟂2⟨v2⟂2⟩

exp [−(
(q) − q ⋅ vg)2
2 q2

⟂2⟨v2⟂2⟩ ] , (13)

where ⟨v2
⟂2⟩ is the variance of large-scale motion velocities. This is an application of a random sweeping

hypothesis (Tennekes 1975) to radio scattering measurements.
The presence of random motions superimposed on the large-scale flows thus gives diffusion tensor

components

Dij = �!4pe

4!2 ∫ qi qj S(q) 1√2� q2
⟂2⟨v2⟂2⟩

exp [−(
(q) − q ⋅ vg)2
2 q2

⟂2⟨v2⟂2⟩ ] d3q

(2�)3 . (14)

Integrating in the approximation q2
⟂2⟨v2⟂2⟩ ≪ q2c2 and taking 
 = 0 we obtain (Equation (C24)) the

diffusion tensor

D = �!4pe

16!2c q �2
⎛⎜⎜⎝
�2 0 0
0 1 0
0 0 ⟨v2⟂2 ⟩

c2

⎞⎟⎟⎠
(15)

leading to a frequency broadening that is mathematically similar to Equation (11), but where ⟨v2
⟂2⟩ now

represents random velocity fluctuations.
Similar considerations apply to randommotions in the parallel (i.e., radial) direction, with a factor of

�2 applied, so that if there are random motions in both directions,

D = �!4pe

16!2c q �2
⎛⎜⎜⎝
�2 0 0
0 1 0
0 0 �2 ⟨v2∥⟩+ ⟨v2⟂2 ⟩

c2

⎞⎟⎟⎠
. (16)
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Again, since � < 1, perpendicular motions are more effective at frequency broadening than radial
(parallel) motions.

4. OBSERVED FREQUENCY BROADENING

Figure 1. The left panel shows the Sun-centered coordinate system and its relation to heliocentric distance and
the line of sight from a distant point source. The broadening of point sources is calculated as an integral alongz. The right-hand panel qualitatively shows how the D⟂2⟂2 diffusion tensor component (see e.g., Equation (4))
varies along z, as illustrated for sources at two different heliocentric distances r(z = 0), with r1 < r2.

To comparewith the observations, wenote that radiowavewithwavevectork is propagating along the
z-direction. We assign the ∥ direction with the (assumed radial) solar magnetic field B (Figure 1). We
also assign the ⟂1 direction to the perpendicular direction that is aligned with the wave propagation
direction at z = 0, and ⟂2 to the perpendicular direction that is orthogonal to both ∥ and ⟂1, i.e.,
perpendicular to the projection of the radial direction on the plane of the sky. The right-handed (∥,⟂2

,⟂1) coordinate system is obtained by rotating the (x, y, z) coordinate system by an angle (−�) around
the y-axis (Figure 1).
Analogously to the results from the three previous subsections, the variance of the wavenumber k

along the path of the radio wave due to motions in the plane of the sky (here denoted by v⟂k) in the
solar atmosphere can be written as

d⟨k2z⟩
dt

= 2Dzz = �!4pe

8!2 c q �2
�2⟨v2

∥
⟩ cos2 � + ⟨v2

⟂2⟩ + ⟨v2
⟂1⟩ sin2 �

c2
, (17)

where �(z) is the angle between the radial direction of the magnetic field and the x-axis (see Figure 1).
For perpendicular motions that are dominated by gyrotropic turbulence, ⟨v2

⟂1⟩ = ⟨v2
⟂2⟩ = ⟨v2

⟂
⟩, this can

be written as

d⟨k2z⟩
dt

= �!4pe

8!2 c q �2
v2
⟂k
c2

, (18)

where
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v2
⟂k =

√
�2 ⟨v2

∥
⟩ cos2 � + ⟨v2

⟂
⟩ (1 + sin2 �) (19)

represents theweighted sumof allmotions perpendicular tok, i.e., in the (x, y) plane of the sky, and the⟨v2
∥
⟩ term is the sum1 in quadrature of both steady flows and random velocities in the parallel direction.

Suchmotions and/or oscillations of density fluctuations in the plane of the sky are perpendicular to the
direction of radio wave propagation k; they hence lead to a change in wavenumber �k that is aligned
with k and so to a change in the magnitude |k|, i.e., to frequency broadening. In the limit ! ≫ !pe,
the group velocity of the radio wave vgr = )!∕)k = c2 k∕! ≃ c. The frequency broadening rates per
unit travel distance vgr dt along the direction of propagation z can be written (similarly to Kontar et al.
2023) as ⟨

�f2⟩
f2 = ∫

los

1
k2z

d
⟨
k2z⟩

c dt
dz = ∫

los

�

8
v2
⟂k
c2

!4
pe

!4 q �2(r)dz , (20)

which can be integrated for known v2
⟂k . The right panel of Figure 2 shows the predicted (taking n2 q �2

from Kontar et al. 2023) broadening for a typical perpendicular speed v⟂ = 30kms−1 fromnon-thermal

line measurements, and v∥ = √
v2s + v2sw where the sound speed vs is given by Equation (24) and the

solar wind speed vsw is given by Equation (25). Importantly, the result does not depend on density

model, but on the strength of density fluctuations n2 q �2 and the plasma velocities.
Equation (20) can be also written approximately as in Appendix F or noting that the largest contri-

bution to frequency broadening comes from the high density region near z = 0 (Figure 1), and hence,
to a good approximation, we can take � ≃ 0 in equation (20). Thus, we can write v2

⟂k ≃ �2⟨v2∥⟩ + ⟨v2
⟂
⟩

taking values at z = 0. The frequency broadening integrated over the path of the radio wave is now
given by

⟨�f2⟩
f2 ≃ �

8
v2
⟂k

c2 !4 ∫
los

!4
pe q �2 dz = 2�3e4

m2
e c2 !4 v2⟂k ∫

los

n2 q �2 dz ; (21)

i.e.,

�f

f
≃ 1
(8�)1∕2 ( e2

me c
) (∫

los

n2 q �2 dz)1∕2 v⟂k
f2 . (22)

which shows that the fractional frequency broadening �f∕f depends on the carrier frequency f as1∕f2 and is determined by motions in the plane of the sky. Although both parallel and perpendicular
velocities may be present, the parallel velocities (both steady flows and randommotions) are weighted
by the anisotropy parameter � < 1 (cf. the expression for frequency broadening in an isotropic plasma;
Equation (36) of Bian et al. 2019). Knowing the anisotropy factor � and the n2 q �2(z) density fluc-
tuation profile from independent measurements, one can deduce the characteristic speeds of density
fluctuations using Equation (22). Indeed, using an analytic approximation for n2 q �2 derived from so-
lar observations (Kontar et al. 2023), one can find an approximate analytical expression for �f, which
is presented in Appendix F.

1 Equations (11) and (15) suggest that both random motions and oscillations with the same phase speed contribute at the
same level.
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Figure 2. Left: Observed spectral broadening �f = √⟨�f2⟩ (the square root of the variance) of spacecraft
signals observed through the corona from various studies, where each carrier signal is scaled to f = 1GHz using
�f∕f ∝ 1∕f2. The conversions applied to the different measures to retrieve the standard deviation are noted
in Appendix D. Right: Form of �f derived from Equations (19) and (20), for v⟂ = 30 km s−1 (from the non-

thermal line broadening measurements in Appendix E), and v∥ =√
v2s + v2sw , where the sound speed vs is given

by Equation (24) and the solar wind speed vsw is given by Equation (25). The solid and dashed lines show �f

derived using 1 × q �2 for � = 0.25 and � = 0.4, respectively, while the grey area shows the range in �f. The
lower bound is given by 1∕2 × q �2 for � = 0.25, and the upper bound is given by 2 × q �2 for � = 0.4.

5. FREQUENCY BROADENINGMEASUREMENTS

Frequency broadening observations (for details see Appendix D) have been conducted a number
of times using signals from different spacecraft (Goldstein & Stelzried 1967; Woo et al. 1976; Woo
1978; Woo & Armstrong 1979; Bradford & Routledge 1980; Yakovlev et al. 1980; Efimov et al. 2002;
Morabito et al. 2003; Efimov et al. 2008, 2013). The left panel of Figure 2 shows the compilation of1� frequency broadening (the square root of the variance, �f ≡ √⟨�f2⟩ ) of spacecraft signals as a
function of heliocentric distance. For observation at different frequencies, the broadened quantity is
scaled to 1 GHz using �f1GHz = �fobs (fobs[GHz])2. Appendix D provides information on the con-
version of other reported broadening measures. The trend of �f with heliocentric distance follows a
broken power-law, with a steeper power law index ∼ −2 below ∼ 3R⊙, transitioning to a somewhat
flatter power-law index of approximately −1.7 above ∼10 R⊙.
Instead of assuming a flow (or turbulent) velocity value, we can alternatively use the measured fre-

quency broadenings to determine the associated velocity, by rewriting Equation (22) in the form

v⟂k ≡
√
�2 ⟨v2∥⟩ + ⟨v2

⟂
⟩ ≃ (8�)1∕2

c ro

f2(∫los n2 q �2 dz)1∕2
�f

f
, (23)
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Landi & Cranmer (2009)
Banerjee et al. (2009)
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Figure 3. Left: Plane-of-sky velocity v⟂k calculated using frequency broadening measurements from Figure 2,

Equation (23), and the n2 q �2 values at variousdistances r derived frommeasurements of other phenomena, such
as angular broadening of extra-solar sources and the location, size and timing of solar radio bursts (Kontar et al.
2023). The green and red points show the conversion of individual �f data points from Figure 2, for different
values of �, with binned averages and weighted uncertainties on each bin. Middle: Parallel and perpendicular
velocities v∥ (blue) and v⟂ (black) required to solely explain the frequency broadening measurements in Fig-
ure 2. The grey dots and stars show a summary of the measured values of the non-thermal velocity standard
deviation from the right panel. Also shown is the solar wind speed vSW (Equation (25)), the ion-sound speed vs
(Equation (24)), and the Alfvén speed from Equation (26), obtained using the density and magnetic field mod-
els in Equations (A1) and (A2) of Kontar et al. (2023). Right: 1� non-thermal velocities vnth from line-of-sight
Doppler broadening of coronal lines (see Appendix E for details).

where ro = e2∕mec
2 is the classical electron radius and is evaluated taking n(r[z])q �2 (r[z]) from

Kontar et al. (2023). In the left panel of Figure 3 we show v⟂k (in km s−1) as a function of heliocen-
tric distance r, for two different values of the anisotropy parameter �. Further, by taking v⟂ = 0 or
v∥ = 0, one can obtain an upper limit on the magnitude of the remaining component of v⟂k . The mid-
dle panel of Figure 3 compares thesemaximum values of v∥ and v⟂with various other speeds, including
the solar wind speed vSW, the sound speed vs, the Alfvén speed vA, and nonthermal velocities deduced
from UV spectral line broadening observations. These reference speeds are calculated as follows:

• Sound speed: The electron temperature of the solar wind is observed to decrease with helio-
centric distance: Te ∝ r−(0.3− 0.7) (e.g., Stverak et al. 2015). If we model the temperature as
Te ≃ 2 × 106 (r∕R⊙ − 1)−0.5 K, then the sound speed vs ≃ √

kBTe∕mi varies with heliocen-
tric distance r as

vs(r) ≃ 130 ( r

R⊙ − 1)−0.25 km s−1 . (24)

• Solar wind speed: In the spherically symmetric expanding corona (Parker 1958), mass conserva-
tion vsw r2 n(r) = const requires that, with a typical solar wind speed of 400 km s−1 at 1 au,

vSW(r) ≈ 400 (n (1 au)
n(r) ) (1 au

r
)2 km s−1 , (25)

where n(r) is the plasma density.
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• Alfvén speed: The Alfvén speed

vA(r) = B(r)√4�mi n(r) (26)

is obtained using the magnetic field and density models in Equations (A1) and (A2) of
Kontar et al. (2023).

• Nonthermal velocities: Nonthermal turbulent velocities are inferred through measurement of the
excess width of EUV coronal spectral lines compared to their thermal widths, and are often inter-
preted as evidence of perpendicular velocity fluctuations at speeds of a few tenths of the Alfvén
speed (e.g., Doyle et al. 1998; Singh et al. 2011). The inferred turbulent velocities are dependent
on the assumed ion temperature (Seely et al. 1997). Measurement of the width of spectral lines
in the radio domain also provide a (temperature-independent) measure of velocity fluctuations.
Figure 3 also shows various measurements of 1� nonthermal velocities at different heliocentric
distances; this information is also summarized in the middle panel of Figure 3.

The middle panel of Figure 3 shows clearly that the velocities deduced from frequency broadening
measurements become dominated by the solar wind speed at large heliocentric distances r > 10R⊙.
However, closer to the Sun at r∼< 10R⊙, the solar wind speed contribution is much smaller than the
inferred v⟂k speeds, whether radial velocities v∥ in the range (100-300) km s−1, or perpendicular mo-
tions v⟂ in the range (25-75) km s−1, or a combination of such motions are considered. Both these
inferred speed ranges are well below the Alfvén speed; however, perpendicular motions of this magni-
tude are quite consistent with the nonthermal speeds deduced from the observed widths of UV spectral
lines. The next section discusses such nonthermal turbulent motions and their possible role in coronal
heating.

6. VELOCITY FLUCTUATIONS AND ALFVÉNWAVE CASCADE

Velocity fluctuations (non-thermal velocities of emitting ions) along of line of sight are often inter-
preted as manifestations of perpendicular to magnetic field velocities (e.g., Doyle et al. 1998) and (as
we have seen above) frequency broadening of radio signals. Such motions are commonly interpreted
as Alfvén waves, which can undergo turbulent cascade to smaller scales (e.g., Hollweg 1978; Leer et al.
1982; Goldstein et al. 1995; Tu & Marsch 1995). The power per unit mass (erg g−1 s−1) available to be
deposited through such a Kolmogorov cascade in strong MHD turbulence (Goldreich & Sridhar 1995)
is estimated to be

�l⟂ ≃ v2
⟂

�
≃ v3

⟂l⟂ , (27)

where the characteristic cascade time is � = l⟂∕v⟂, with l⟂ being a measure of the transverse correla-
tion length (Hollweg 1986). Although l⟂ is not measurable directly in the corona, one can assume it
to be comparable to the transverse size of a flux tube (see Equation (4) in Hollweg 1986):

l⟂ = 7.5 × 108√
B

cm , (28)
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Figure 4. Left: Available power per unitmass, �l⟂ (erg g−1 s−1) fromEquation (27), using perpendicular velocity
fluctuations from Figure 3. The solid and dashed lines correspond to the range (20-70) km s−1 (black) from
frequency broadening measurements, and (20-40) km s−1 for r < 1.4R⊙ for non-thermal velocities from coronal
lines (red). Right: Coronal heating rate per unit mass (erg g−1 s−1) from Landau damping of ion-sound waves

given by Equation (33). As in the right panel of Figure 2, the solid and dashed lines show 1 × q �2 for � = 0.25
and � = 0.4, respectively, and the grey area corresponds to the range of values [1∕2, 2] × q �2, considering both
values of �.

where B is in Gauss. This is also similar to the estimate used in MHD simulations (see Equation (51)
in Cranmer & van Ballegooijen 2005, and subsequent discussion therein).
The quantity �l⟂ is the power per unit mass at the outer scale of the inertial range; it is the rate at

which energy enters the turbulent cascade process at the largest scales, and it is a scale-invariant quan-
tity within the inertial range of turbulence. The value of �l⟂ often serves as ameasure of coronal heating
via Alfvén turbulent cascade, or the specific energy rate associated with anisotropic MHD turbulence
(Goldreich & Sridhar 1995). This energy input rate plays a role that is conceptually similar to the solar
flare scenario, in which an Alfvén turbulence cascade (estimated from measured non-thermal veloci-
ties) is believed to power particle acceleration in solar flares (Kontar et al. 2017a; Stores et al. 2021).
The left panel of Figure 4 shows the values of �l⟂ deduced from the perpendicular velocities in-

ferred from radio wave frequency broadening observations (Figure 3). They suggest an energy cas-
cade rate �l⟂ ≃ 1011 erg g−1 s−1, a value that is similar to earlier estimates (e.g., Hollweg 1986;
Cranmer & van Ballegooijen 2005).

7. DAMPING OF ION-SOUNDWAVES

Energy could be supplied to the corona and solar wind via absorption of the energy contained in
ion-sound or slow magneto-sonic waves (e.g., Kellogg 2020, and references therein), that are often ob-
served in the corona (e.g., DeForest & Gurman 1998;Wang et al. 2009; Gupta et al. 2012). For q �De ≪ 1
(where �De is the Debye length), the spectral energy density of parallel propagating ion-sound waves
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Wq (erg cm−3 [cm−1]−3]) is related to the spectrum of density fluctuations S(q) ([cm−1]−3]) by (see, e.g.,
Appendix C in Lyubchyk et al. 2017)

Wsq
nekBTe ≃

|||�ne|||2q (q)
n2e ≡ S(q) . (29)

Parallel propagating ion-sound waves are strongly damped, especially in the plasma with Ti ≃ Te. The
Landau damping rate sq (s−1) of ion-sound waves with vs ≃ √

kBTe∕mi is proportional to the wave
frequency 
sq = vs q∥ (e.g., Krall & Trivelpiece 1973; Pécseli 2012):

sq =
√

�

8 
sq {√me
mi + (Te

Ti )
3∕2 exp [− ( Te2Ti )]} , (30)

where kB is Boltzmann’s constant and Te and Ti are the electron and ion temperatures, respectively.
The first term on the right-hand-side of Equation (30) is the electron contribution, while the second
term is from protons. For Te ≃ Ti ion-sound waves are subject to very strong damping, with a damping
rate becoming

sq ≃
√

�

8 e vs q∥ ≃ 0.4 vs q∥ (31)

that is a substantial fraction of the wave frequency. This strong damping of the energy associated with
ion-sound waves results in a volumetric energy deposition rate (erg cm−3 s−1)

dE

dt
= ∫2 sqWsq d3q , (32)

or, equivalently, a coronal heating rate per unit mass (erg g−1 s−1)

�i = 1
�

dE

dt
= 2
min∫ sqWsq d3q ≃ 0.8 v3s ∫ |q∥| S(q) d3q

(2�)3 = 0.8� v3s q �2 , (33)

where the third equality follows from the fact that the ion-sound waves propagate along the (radial)
magnetic field. The right panel of Figure 4 shows the heating rate given by Equation (33); it has a
shape that is similar to the heating functions often used in simulations (e.g., Figure 7 in Cranmer 2010).
The inferred heating rate has a broad maximum at (1-3)R⊙, consistent with the observed increasing
temperature of the solar corona out to this radius (Wheatland et al. 1997).
The heating rate (33) is proportional to the quantity q �2, which, as we have seen, can be inferred

from observations related to radio-wave scattering. As shown in Figure 1 of Kontar et al. (2023), q �2
is dominated by fluctuations at short wavelengths near the inner scale q−1i ∼ c∕!pi, so that (their
Equation (29)):

q �2 ≃ 5 qi ⟨�n2i ⟩n2 . (34)

The coronal heating rate per unit mass due to absorption at heliocentric distance r can therefore be
expressed rather succinctly as �i(r) ≃ 4� qi v3s ⟨�n2i ⟩∕n2.
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The quantities �l⟂ and �i are associated with very different physical models, and they are associated
with length scales that span five orders of magnitude: the power generated in large-scale Alfvén mo-
tions �l⟂ is dominated by scales l⟂(r = 2R⊙) ≃ 104 km, while the energy dissipation rate �i due
to ion-sound wave damping is dominated by waves at the inner scale q−1i of the turbulence spectrum,
which at r = (2−3)R⊙ is of order 0.1 km. Despite this vast difference in characteristic scales, the quan-
tities �l⟂ and �i at r ≃ (1 − 2)R⊙ are very similar; indeed, they are identical within the error bars, with
�l⟂ ≃ �i ≃ 1011 erg g−1 s−1 (Figure 4). This result is both unexpected and tantalizing, suggesting that the
energy associatedwith large-scalemagnetic fieldmotions can effectively cascade over the entire inertial
range, eventually appearing as small-scale ion-sound waves that are very effectively damped, causing
plasma heating. This intriguing result has significant implications for models of coronal heating.

8. SUMMARY AND DISCUSSION

Using a density fluctuation model obtained from analysis of solar radio bursts, combined with fre-
quency broadening measurements from various spacecraft, we have deduced the magnitude of the
characteristic velocities in the solar corona and the solar wind. The inferred velocities depend on the
anisotropy of the density turbulence. The amount of spacecraft signal broadening, and the anisotropic
density fluctuation inferred from solar burst data, tell a remarkably coherent story about the level of
density turbulence in the solar corona and the bulk flow speeds present; the latter are consistent with
previously published values that employed different analysis techniques. The perpendicular veloci-
ties are also consistent with the non-thermal speeds deduced from line-of-sight Doppler broadening
of spectral lines in the low corona. Interpreted as Alfvén wave amplitudes, these results allow us to
determine the amount of energy per unit time transferred in the turbulent cascade from large to small
scales, and eventually deposited in the low corona and into the solar wind.
At distances r∼> 10R⊙, the frequency broadening is dominated by solar wind motion. The deduced

velocity values (200-600) km s−1 at ∼100 R⊙ are consistent with previous scintillation measurements
(e.g., Ekers & Little 1971;Armstrong & Woo1981) and are also consistentwith characteristic solarwind
speeds at these distances (e.g., Bunting et al. 2024). The anisotropy of density fluctuations appears to
be an important ingredient: if the spectrum of density fluctuations were isotropic, only much slower
sub-solar-wind speeds (up to ∼ 100 km s−1) would be consistent with the frequency broadening obser-
vations; alternatively, the observed frequency broadeningwould be consistent with observed solar wind
speeds only if the level of density fluctuations were much lower than inferred from other observations,
such as angular broadening of extra-solar sources.
Closer to the Sun (r∼< 10R⊙), however, the solar wind speed becomes small, while the velocities re-

quired to explain the frequency broadening observations remain large. The frequency observations
require either speeds (20-70) km s−1 in the perpendicular direction, or (100-300) km s−1 in the parallel
direction or both. Within the description adopted, these two scenarios (or a combination of the two)
cannot be meaningfully distinguished.
Given the possible importance of waves and turbulence in the context of solar coronal heating, there

are a number of reported results on plasma motions in the corona/solar wind. Plasma motions in the
corona between (1 − 2)R⊙ are normally detected using excess (i.e., larger than what would be from
thermal motion of the emitting ion) broadening of emission lines fromminor ions, and have velocities
comparable to those required to realize the observed level of frequency broadening of radio sources. It
should be noted that the non-thermal broadening is proportional to the line-of-sight speed (i.e. along
the⟂1 direction), as distinct from the speeds inferred from frequency broadeningmeasurements, which
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are predominantly along the ⟂2 direction, perpendicular to the line of sight. The similar values of ve-
locity thus suggest azimuthal symmetry in the velocity distribution perpendicular to the radial direc-
tion, i.e., to the magnetic field. Similar to the frequency broadening measurements, which are agnostic
relative to steady flows versus random “turbulent” velocity patterns with the same root-mean-square
speed, there is an ongoing discussion about whether non-thermal broadening of spectral lines is due to
bulk plasma flows or to quasi-random ion distribution motions (see discussion in Jeffrey et al. 2016).
Given that ions are preferentially heated via cyclotron resonance (Seely et al. 1997; Tu et al. 1998), this
distinction could be particularly important.
It is interesting to note that there is a broad agreement among the turbulent velocities inferred from

interplanetary scintillation measurements (e.g., Ekers & Little 1971; Armstrong & Woo 1981). Our av-
erage values are somewhat smaller, with perpendicular velocities mostly below 100 km s−1, with a
marginal decrease in speed towards the Sun. Importantly, our results, like those associated with previ-
ously reported measurements, show a large spread of values, re-emphasizing a high level of variability
of the turbulence level in the solar corona.
Scattering of radio waves requires coherent structures (density fluctuations), which could either

be oscillatory in nature or carried by bulk plasma motions. Perpendicular large-scale motions (at
scales much larger than the density fluctuation wavelength) could be random torsional or kink (e.g.,
Alfvén) waves that move around small scale fluctuations. In a turbulent plasma, the spectral broaden-
ing may also be associated with large-scale advection of eddies in a Kolmogorov turbulent cascade
(e.g., Tennekes 1975). Quasi-parallel motions or waves parallel to the magnetic field with a speed
comparable to the sound (or ion thermal) speed would also produce a similar frequency broadening.
Wexler et al. (2019) has interpreted the broadening as due to sound waves. If ion-sound waves are
present, one can calculate the energy deposited to ions via Landau damping, and we find a value of or-
der 1011 erg g−1 s−1, comparable to the heating required to sustain amillion-degree corona (e.g., Hollweg
1986; Cranmer & van Ballegooijen 2005).
Sound waves do not necessarily propagate from the low atmosphere (although EUV observations

suggest propagating slow/sound waves, e.g., DeForest & Gurman 1998), but could instead be lo-
cally generated via parametric decay of Alfvén waves (e.g., Sagdeev & Galeev 1969; Malara & Velli
1996; Del Zanna et al. 2001) or from MHD turbulence cascade (e.g., Zank & Matthaeus 1993;
Lithwick & Goldreich 2001; Cho & Lazarian 2003; Chandran et al. 2009; Bian et al. 2010; Zank et al.
2017). Since the value of q �2 depends mostly on the level of density fluctuations near the ion-scale
break scale q−1i ∼ c∕!pi (Kontar et al. 2023), the parallel-propagating ion-sound waves Cerenkov res-
onate mostly with protons and should be strongly Landau damped. This suggests that a constant re-
supply of ion-sound waves is required, probably via the aforementioned parametric decay of Alfvén
waves and/or the turbulent cascade. Interestingly, the estimate of Kolmogorov cascade power using
large scale motions v3

⟂
∕l⟂ (at the outer scales l⟂) provides the same power that would be dissipated

via ion-sound waves at inner scales q−1i . Within such a scenario, ion-sound waves (or slow MHDmode
waves) act as an intermediate in the coronal heating chain and thus serve as a valuable diagnostic of
ion heating in the solar corona.
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APPENDIX

A. DIFFUSION TENSOR: STATIC DENSITY FLUCTUATIONS

Figure 5. Wavevector coordinate system used in our analysis; the radio wave, with wavevectork, is propagating
along the ⟂1 direction.

Figure 5 shows the wavevector coordinate system used for our analysis; it is a polar system in theq̃ space (in which the density fluctuation spectrum S(q̃) is isotropic: S(q̃) ≡ S(q)). The polar axis
is aligned with the ⟂1 direction, which is along the direction of k and vg (Figure 5). The direction
cosine � = cos �, where � is the polar angle from the ⟂1 axis, while the azimuthal angle � measures
the angle from the ∥ direction in the (q̃∥, q̃⟂2) plane. Thus q̃⟂1 = q̃ �, q̃⟂2 = q̃ (1 − �2)1∕2 sin � and
q̃∥ = q̃ (1 − �2)1∕2 cos �. Changing variables from q = (q∥, q⟂2 , q⟂1) to q̃ = Aq = (�−1q∥, q⟂2, q⟂1),
Equation (1) can be written as

Dij = �!4pe
4!2 ∫ qi qj S(q) � (q ⋅ vg) d3q

(2�)3 =
�!4pe
4!2 �A−1i� A−1j� ∫ q̃� q̃� S(q̃) � (q̃ ⋅ ṽg) d3q̃

(2�)3 , (A1)

where ṽ = (� v∥, v⟂2 , v⟂1) and we have used the determinant of the Jacobian det (J) = det (A−1) = �.
For elastic scattering and a radio wave propagating along the ⟂1 direction, we can use Equation (A1)

to find the various components of the diffusion tensor, viz.

D∥∥= � !4pe
4!2 �3∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) cos2 � S(q̃) � (q̃ ṽg �) q̃2 dq̃ d� d�(2�)3
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= �2 !4pe
4!2 c �3 ∫

∞

q̃=0 q̃ S(q̃) q̃
2 dq̃
(2�)3 = �!4pe

16!2 c �2 q �2 , (A2)

D⟂2⟂2= �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) sin2 � S(q̃) � (q̃ ṽg �) q̃2 dq̃ d� d�(2�)3
= �!4pe
4!2 c �∫

∞

q̃=0∫
2�

�=0 q̃ sin2 � S(q̃) q̃
2 dq̃ d�
(2�)3 = �!4pe

16!2c q �2 . (A3)

and

D⟂1⟂1 = �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 �2 S(q̃) � (q̃ ṽg �) q̃
2 dq̃ d� d�
(2�)3 = 0 . (A4)

Further, because ∫2�
0 sin � cos � d� = 0we haveD⟂2∥ = D∥⟂2 = 0, while the Dirac delta function in the

integral results in D⟂1∥ = D∥⟂1 = D⟂1⟂2 = D⟂2⟂1 = 0. Thus

D = �!4pe
16!2 cq �2

⎛⎜⎜⎝
�2 0 0
0 1 0
0 0 0

⎞⎟⎟⎠
≡ �!4pe
16!2 c q �2 diag (�2, 1, 0) , (A5)

so that there are only two non-zero elements, neither of which contributes to frequency broadening.
These results recover the expressions obtained by Kontar et al. (2019).

B. DIFFUSION TENSOR: MOVING DENSITY FLUCTUATIONS

B.1. Parallel Waves

Consider density fluctuations moving along the ∥ direction, i.e., 
(q) = v∥ q∥. Then from Equa-
tion (9), and referring to Figure 5, we find

D∥∥ = �!4pe
4!2 �3∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) cos2 � S(q̃) � (ṽ∥ q̃√1 − �2 cos� − q̃ ṽg �) q̃2 dq̃ d� d�(2�)3 ,
(B6)

D⟂2⟂2 = �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) sin2 � S(q̃) � (ṽ∥ q̃√1 − �2 cos� − q̃ ṽg �) q̃2 dq̃ d� d�(2�)3 ,
(B7)

and

D⟂1⟂1 = �!4pe
4!2 � ∫

∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 �2 S(q̃) �
(ṽ∥√1 − �2 q̃ cos � − q̃ ṽg �) q̃2 dq̃ d� d�(2�)3 . (B8)

Noting that ṽ = (� v∥, v⟂2, v⟂1), the delta function can be expanded using the roots of g(�) =A√1 − �2 − �, where A = (ṽ‖∕ṽg) cos � ≃ � (v‖∕c) cos�, into
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� (A√1 − �2 − �) = 1
1 + A2 � (� − A√1 + A2) .

Thus, integrating over � and retaining up to O (A2) terms, we obtain

D∥∥ ≃ �!4pe
4!2 c �3∫

∞

q̃=0∫
2�

�=0 q̃ (1 − 2 ṽ‖2c2 cos2 �) cos2 � S(q̃) q̃2 dq̃ d�(2�)3 = �!4pe
16!2 c �2 ⎛⎜⎝1 −

3
2 �2 v

2‖c2 ⎞⎟⎠ q �
2 ,
(B9)

D⟂2⟂2 = �!4pe
4!2 c �∫

∞

q̃=0∫
2�

�=0 q̃ (1 − 2 ṽ‖2c2 cos2 �) sin2 � S(q̃) q̃2 dq̃ d�(2�)3 = �!4pe
16!2 c ⎛⎜⎝1 −

1
2 �2 v

2‖c2 ⎞⎟⎠ q �
2 ,
(B10)

and

D⟂1⟂1 = �!4pe
4!2 c � ∫

∞

q̃=0∫
2�

�=0 q̃
⎛⎜⎝
ṽ2‖c2 cos2 �⎞⎟⎠ S(q̃)

q̃2 dq̃ d�
(2�)3 = �2 v2‖c2 �!4pe

16!2 c q �2 . (B11)

These are modified scattering rate expressions, compared to Equations (A4), (A3) and (A2). However,
the corrections are generally small since v2∥∕c2 ≪ 1.
Further, because ∫2�

0 sin � d� = 0, ∫2�
0 cos� d� = 0, and ∫2�

0 sin � cos � d� = 0, we have, respec-
tively,

D⟂1⟂2 = D⟂2⟂1 = 0 ; D∥⟂1 = D⟂1∥ = 0 ; D∥⟂2 = D⟂2∥ = 0 . (B12)

Thus the diffusion tensor has the form

D = �!4pe
16!2 c q �2 diag ⎛⎜⎝�

2 ⎡⎢⎣1 −
3
2 �2 v

2‖c2 ⎤⎥⎦ , 1 −
1
2 �2 v

2‖c2 , �2 v
2‖c2 ⎞⎟⎠ . (B13)

Both ∥ and ⟂2 directions are perpendicular to the wavevector k in this analysis. Hence, for �k ⟂ k
and hence the scattering corresponding to the ⟂2⟂2 and ∥∥ terms is elastic. The change to the ab-
solute value of |k|, or equivalently the wave frequency !(k) ≃ c|k|, comes from the term D⟂1⟂1 ∝d ⟨�k2

⟂1
⟩ ∕dt ≠ 0. Henceforth, we can write

D = �!4pe
16!2 c q �2 diag ⎛⎜⎝�

2, 1, �2 v2‖c2 ⎞⎟⎠ . (B14)

B.2. Perpendicular Waves

For the case of waves moving in the ⟂2 direction, i.e., 
(q) = v⟂2q⟂2 , the same formalism can be
applied here, with A = (ṽ⟂2∕ṽg) sin � ≃ (v⟂2∕c) sin�, to obtain
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D∥∥ ≃ �!4pe
4!2 c �3∫

∞

q̃=0∫
2�

�=0 q̃ (1 − 2 ṽ2⟂2c2 sin2 �) cos2 � S(q̃) q̃2 dq̃ d�(2�)3 = �!4pe
16!2 c �2 (1 − 1

2
v⟂22c2 ) q �2 ,

(B15)

D⟂2⟂2 = �!4pe
4!2 c �∫

∞

q̃=0∫
2�

�=0 q̃ (1 − 2 ṽ2⟂2c2 sin2 �) sin2 � S(q̃) q̃2 dq̃ d�(2�)3 = �!4pe
16!2 c (1 − 3

2
v⟂22c2 ) q �2 ,

(B16)
and

D⟂1⟂1 = �!4pe
4!2 c �∫

∞

q̃=0 ∫
2�

�=0 q̃ (
ṽ2
⟂2c2 sin2 �) S(q̃) q̃2 dq̃ d�(2�)3 = v2

⟂2c2 �!4pe
16 c !2 q �2 . (B17)

Again, because ∫2�
0 sin � d� = 0, ∫2�

0 cos � d� = 0, and ∫2�
0 sin� cos� d� = 0, we have, respectively,

D⟂1⟂2 = D⟂2⟂1 = 0 ; D∥⟂1 = D⟂1∥ = 0 ; D∥⟂2 = D⟂2∥ = 0 . (B18)

Thus, following the same reasoning as in Equation (B13), the diffusion tensor for perpendicular mo-
tions takes the form

D = �!4pe
16!2 c q �2 diag (�2, 1, v

2
⟂2c2 ) . (B19)

C. DIFFUSION TENSOR: RANDOMMOTIONS

C.1. RandomMotions Superimposed on a Static Background

Integrating Equation (14) in the approximation q2
⟂2⟨v2⟂2⟩≪ q2c2 and taking 
 = 0 yields

D∥∥= �!4pe
4!2 �3∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) cos2 � S(q̃) 1√2� q̃2
⟂2⟨ṽ2⟂2⟩

exp [− (q̃ c �)2
2 q̃2

⟂2⟨ṽ2⟂2⟩]
d� d� q̃2dq̃

(2�)3
= �!4pe
16!2 c �2 (1 − 1

4
⟨v2

⟂2⟩c2 ) q �2 , (C20)

where we have used the substitution � = � c∕√⟨ṽ2
⟂2⟩, approximated q2⟂2 ≈ q2 sin2 � and made use of

the formula ∫∞
−∞ �2 exp (−b �2)d� = √�∕4 b3. In the same way, we find

D⟂2⟂2= �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 (1 − �2) sin2 � S(q̃) 1√2� q̃2
⟂2⟨ṽ2⟂2⟩

exp [− (q̃ c �)2
2 q̃2

⟂2⟨ṽ2⟂2⟩]
d� d� q̃2dq̃

(2�)3
= �!4pe
16!2 c (1 − 3

4
⟨v2

⟂2⟩c2 ) q �2 , (C21)
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D⟂1⟂1= �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 �2 S(q̃) 1√2� q̃2
⟂2⟨ṽ2⟂2⟩

exp [− (q̃ c �)2
2 q̃2

⟂2⟨ṽ2⟂2⟩]
d� d� q̃2dq̃

(2�)3
= ⟨v2

⟂2⟩c2 �!4pe
16!2 c q �2 , (C22)

and D⟂1⟂2 = D⟂2⟂1 = 0 ; D∥⟂1 = D⟂1∥ = 0 ; D∥⟂2 = D⟂2∥ = 0 . (C23)

The components of the diffusion tensor for randommotions (“turbulence”) can then be approximated
as

D = �!4pe
16!2 c q �2 diag (�2, 1, ⟨v

2
⟂2⟩c2 ) . (C24)

C.2. RandomMotions Superimposed on Flows in a General Direction

Here we consider randommotions superimposed on flows in a general direction perpendicular to k.
For this purpose we can use the general result

∫
∞

�=−∞ B �2 exp (−B
2
2 (� − A)2)d� = B ∫

∞

�=−∞(A + �)2 exp (−B22 �2)d� =
= B ∫

∞

�=−∞(A2 + �2 + 2A�) exp (−B22 �2)d� = √2� (A2 + 1B2 ) (C25)

to compute the components of the diffusion tensor.
We first consider radially propagating density fluctuations, with 
(q) = v∥ q∥. If we add random

motions in the same direction we can evaluate the D⟂1⟂1 term that contributes to the frequency broad-
ening:

D⟂1⟂1= �!4pe
4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 �2 S(q̃) 1√2� q̃2∥⟨ṽ2∥⟩ exp [−
(q̃ c � − q̃∥ṽ∥)2

2 q̃2∥⟨ṽ2∥⟩ ] d� d� q̃2dq̃(2�)3
= �!4pe
16!2 c q �2 �

2(v2∥ + ⟨v2∥⟩)c2 , (C26)

where we have approximated q̃2∥ ≈ q̃2 cos2 �, made use of the substitution � = �√⟨ṽ2∥⟩ ∕ c, and used
Equation (C25).
If we then consider propagation and randommotions that are both in the direction perpendicular to

the solar radius vector, with dispersion relation 
(q) = v⟂2 q⟂2, we find
D⟂1⟂1= �!4pe

4!2 �∫∞

q̃=0∫
2�

�=0 ∫
1

�=−1 q̃2 �2 S(q̃) 1√2� q̃2
⟂2⟨ṽ2⟂2⟩

exp [− (q̃ c � − q̃⟂2ṽ⟂2)2
2 q̃2

⟂2⟨ṽ2⟂2⟩ ] d� d� q̃2dq̃(2�)3
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= �!4pe
16!2 c q �2 v

2
⟂2 + ⟨v2

⟂2⟩c2 , (C27)

where we have made use of the substitution � = �√⟨ṽ2
⟂2⟩ ∕ c, approximated q̃2⟂2 ≈ q̃2 sin2 �, and used

Equation (C25).
If both parallel and perpendicular contributions are taken into account, the diffusion tensor takes the

form

D = �!4pe
16!2 c q �2 diag ⎛⎜⎝�

2, 1, �2
(v2∥ + ⟨v2∥⟩)+ v2

⟂2 + ⟨v2
⟂2⟩c2 ⎞⎟⎠ . (C28)

Since steady flows v2 and random motions ⟨v2⟩ contribute equally, we can rewrite this as simply
D = �!4pe

16!2 c q �2 diag(�2, 1, �
2 ⟨v2∥⟩ + ⟨v2

⟂2⟩c2 ) , (C29)

where now ⟨⋯⟩ includes both steady and random flows, in the parallel or perpendicular directions,
respectively, added in quadrature.

D. CONVERSION OF REPORTED FREQUENCY BROADENING VALUES TO STANDARD
DEVIATIONS

Here we briefly summarize how the frequency broadening in each reported data set, that is not al-
ready presented as a standard deviation �, is converted to give �f ≡ � for use in Figure 2. We also note
that any reported data that relate to solar transient events have been removed, and we consider only
one-way signals.
Goldstein & Stelzried (1967) define the bandwidth as the width of an equivalent rectangle of the same

height and area as the measured curves. Comparing with a normalized Gaussian distribution, this

implies that the reported bandwidth is B = √2� �, so that �f = � = B∕√2�. Yakovlev et al. (1980)
define the bandwidth as the “width of the spectral line,” which, absent more detailed specification, we
take to be a measure of the standard deviation �. The signal measurements of Morabito et al. (2003)
are provided as B = FWHM, which converts as �f = � = B∕2√2 ln 2. Finally, Woo et al. (1976); Woo
(1978);Woo & Armstrong (1979) and Bradford & Routledge (1980) define the bandwidthB through the
relation

∫
B∕2

0
P(f) df = 1

2 ∫
∞

0
P(f) df .

For a Gaussian distribution with standard deviation �, this reduces to
erf ( B2√2�) = 12 ,

where the error function is erf (x) = ∫x
0 e−t2 dt. We thus obtain, for these data sets,

�f = � = [ 2√2 erf−1 (12) ]
−1 B ≃ 0.75B .
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E. NON-THERMAL VELOCITIES

The non-thermal velocities are determined from the width � of the spectrum line profile, mea-

sured at the 1∕e level, and we retrieve the standard deviation vnth = �∕√2. We use data from
Hassler et al. (1990); Chandrasekhar et al. (1991); Banerjee et al. (1998); Doyle et al. (1998, 1999);
Esser et al. (1999); Contesse et al. (2004); Banerjee et al. (2009); Landi & Cranmer (2009); Singh et al.
(2011); and Bemporad & Abbo (2012). A summary of the results is presented in Figure 3.

F. ANALYTICAL APPROXIMATION TO FREQUENCY BROADENING

For the propagation of a radio wave from a distant radio source to the observer at the Earth with a
heliocentric angular separation robs = r(z = 0) (see, e.g., Kontar et al. 2023, and Figure 1), there is a
frequency broadening given by Equation (20):

⟨�!2⟩
!2 = �8 c2 !4 ∫los !

4pe
[
�2 ⟨v2∥⟩ cos2 � + ⟨v2

⟂
⟩(1 + sin2 �) ] q �2 dz . (F30)

Assuming that the various quantities in the integral are functions of heliocentric distance r =√
r2obs + z2, we obtain

⟨�!2⟩
!2 = 2�3 e4

m2e c2 !4 ∫
1 au

−∞
n2 (√r2

obs
+ z2) q �2 (√r2

obs
+ z2 ) ×

× [�2 ⟨v2∥⟩ (√r2
obs

+ z2) cos2 � + ⟨v2
⟂
⟩ (√r2

obs
+ z2) (1 + sin2 �) ] dz , (F31)

where we have used !pe = √4�ne2∕me. With the substitution z = robs tan�, this can be written

⟨�!2⟩
!2 = 2�3 e4

m2e c2 !4
robs
R⊙ ∫

tan−1(215R⊙∕robs)
−�∕2

n2(robs sec�) q �2 R⊙(robs sec�) ×
× [

�2 ⟨v2∥ ⟩(robs sec�) cos2 � + ⟨v2
⟂
⟩(robs sec�)(1 + sin2 �) ] sec2 � d� . (F32)

Figure 6 of Kontar et al. (2023) shows that, empirically,

n2 (robs sec�) q �2 R⊙ (robs sec�) ≃ 6.5 × 1014 (robs sec�
R⊙

− 1)−5.17 cm−6 . (F33)

Using this expression and taking the velocity variances outside the integral as averages, we obtain⟨
�!2⟩
!2 =6.5 × 1014 ( e4

8�m2
ec2f4

) (robs
R⊙

)−4.17 ×
×
⎧
⎨⎩
�2⟨v2‖⟩∫tan−1(215R⊙∕robs)

−�∕2
(1 − R⊙ cos�

robs
)−5.17 cos5.17 �d�+

+ ⟨
v2
⟂

⟩∫tan−1(215R⊙∕robs)
−�∕2

(1 − R⊙ cos�
robs

)−5.17 cos3.17 � (1 + sin2 �)d�⎫⎬⎭
.

(F34)
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At closest-approach distances robs ≫ R⊙, the term (1 − R⊙ cos�∕robs)−5.7 ≃ 1. Adopting this approxi-
mation, the frequency broadening reduces to the relatively simple form⟨

�!2⟩
!2 = 6.5 × 1014 ( e4

8�m2
ec2f4

) (robs
R⊙

)−4.17 ×
× {�2⟨v2‖⟩∫�obs

−�∕2
cos5.17 �d� + ⟨

v2
⟂

⟩∫�obs

−�∕2
cos3.17 � (1 + sin2 �) d�} .

(F35)

where �obs = tan−1 (215R⊙∕robs ). Each integral can be split into two parts: one from � = −�∕2 to 0
(corresponding to the incoming ray from∞ to the distance of closest approach robs , and other from 0
to �obs , corresponding to the outgoing ray from robs to 1au. The integral can then be expressed in terms
of beta functions and incomplete beta functions, respectively, viz.

⟨
�!2⟩1∕2
!

= 2.55 × 107 ( e2
mec

) (robs
R⊙

)−2.085 [�2 �2‖ v2‖,rms + �2
⟂
v2
⟂,rms

]1∕2 × 1
f2 , (F36)

where we have defined v∥,rms = ⟨v2∥ ⟩1∕2 and v⟂,rms = ⟨v2
⟂
⟩1∕2 and

�‖ (robsR⊙
) = [B(1; 3.085, 0.5) + B( ; 3.085, 0.5)16� ]1∕2 , (F37)

�⟂ (robsR⊙
) = [B(1; 2.085, 0.5) + B( ; 2.085, 0.5) + B(1; 2.085, 1.5) + B( ; 2.085, 1.5)16� ]1∕2 . (F38)

Here B( ; u, v) are the (incomplete for  < 1 ) beta functions corresponding to the inte-

grals 2∫�∕20 cos5.17 �d�, 2∫�∕20 cos3.17 �d�, and 2∫�∕20 cos3.17 � sin2 �d�, respectively, and  =[1 + (
robs ∕215R⊙)2]−1.

We note that the ratio of the third and first terms in the numerator of the expression for �⟂ is

�⟂ = �(2.085) �(1.5) ∕�(3.585)
�(2.085) �(0.5) ∕�(2.585) =

0.5
2.585 ≃ 0.2 ,

so that, given the
√1 + �⟂ dependence in the expression (F37) for �⟂, the contribution from the sin2 �

term (which is associated withmotions in the⟂1 direction) to the overall broadening is only about 10%.
Moreover, the ratio of the lead terms in the expressions for �∥ and �⟂ is√

�(3.085) �(0.5) ∕�(3.585)
�(2.085) �(0.5) ∕�(2.585) =

√2.085
2.585 ≃ 0.9 ,

showing that the contributions from motions in the ∥ and ⟂2 directions are similar (apart from the
anisotropy factor �). But, since �2 ≪ 1, we can, to a good approximation, neglect the contribution
from v∥,rms and write Equation (F36) as
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⟨�!2⟩1∕2
!

= 2.55 × 107 �⟂ ( e2
me c

) (robs
R⊙

)−2.085 v⟂,rms × 1
f2 . (F39)

Scaling to a nominal frequency of f = 1 GHz (Figure 2), this evaluates to
�f

f
≃ 2.1 × 10−13 �⟂ v⟂,rms (robsR⊙

)−2.085 (1GHz
f

)2 , (F40)

where we have written �f for ⟨�f2⟩1∕2. Equation (F40) provides a simple, but nevertheless accurate,
analytical approximation for the frequency broadening, valid for robs ≫ R⊙. With a nominal robs =10R⊙, we obtain �⟂ ≃ 0.25 and so �f∕f ≃ 4 × 10−16 v⟂,rms (f[GHz])−2, corresponding to �f ≃4 × 10−7 v⟂,rms Hz at f = 1GHz. Figure 2 shows that �f ≃ 3 Hz at r = 10R⊙, corresponding to
v⟂,rms ≃ 7.5 × 106 cm s−1, i.e., 75 km s−1.
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